Scientists discover a way to reverse memory loss in 'accidental breakthrough'


MyBB Legend
Jun 12, 2007

Scientists have stumbled upon a way to reverse memory loss with the potential to treat thousands of Alzheimer's sufferers while performing experimental brain surgery for another condition.

The accidental breakthrough came during brain surgery on a 50-year-old man, who was being treated for obesity.

If successful, the treatment could provide a "pacemaker" for the brain to the 417,000 people in Britain who are afflicted with the degenerative condition.

During the operation scientists had pushed electrodes into the man's brain and stimulated them with an electric current to suppress his appetite, using the increasingly successful technique of deep-brain stimulation.

But instead of losing his appetite, the patient had an intense experience of deja vu.

He recalled, in intricate detail, a scene from 30 years earlier.

More tests showed his ability to learn was dramatically improved when the current was switched on and his brain stimulated.

Scientists are now applying the technique in the first trial of the treatment to Alzheimer's patients.

Three patients have been treated and initial results are promising, according to Andres Lozano, a professor of neurosurgery at the Toronto Western Hospital, Ontario, who is leading the research.

Professor Lozano said: "This is the first time that anyone has had electrodes implanted in the brain which have been shown to improve memory.

"We are driving the activity of the brain by increasing its sensitivity – turning up the volume of the memory circuits. Any event that involves the memory circuits is more likely to be stored and retained."

The discovery had caught him and his team "completely by surprise", Professor Lozano said. They had been operating on the man, who weighed 30 stone, to treat his obesity by locating the point in his brain that controls appetite.

All other attempts to curb his eating had failed and brain surgery was the last resort.

The treatment for obesity was unsuccessful.

But, while the researchers were identifying potential appetite suppressant points in the hypothalamus, the part of the brain associated with hunger, the man suddenly began to say that memory was flooding back.

"He reported the experience of being in a park with friends from when he was around 20 years old and, as the intensity of stimulation increased, the details became more vivid.

"He recognised his girlfriend [from the time] ... The scene was in colour.

"People were wearing identifiable clothes and were talking, but he could not decipher what they were saying," the researchers write in Annals of Neurology, published today.

The man, who has not been identified, was also tested on his ability to learn lists of paired objects. After three weeks of continuous hypothalamic stimulation, his performance on two learning tests was significantly improved.

He was also much more likely to remember a list of unrelated paired objects with the electrodes turned on than when turned off.

Professor Lozano said: "His performance improved dramatically. As we turned the current up, we first drove his memory circuits and improved his learning.

"As we increased the intensity of the current, we got spontaneous memories of discrete events. At a certain intensity, he would slash to the scene [in the park]. "When the intensity was increased further, he got more detail but, when the current was turned off, it rapidly decayed."

The discovery surprised the scientists as the hypothalamus has not usually been identified as a seat of memory. The contacts that most readily produced the memories were located close to a structure called the fornix, an arched bundle of fibres that carries signals within the limbic system, which is involved in memory and emotions and is situated next to the hypothalamus.

Professor Lozano is a world authority on deep-brain stimulation who has undertaken 400 operations on Parkinson's disease sufferers and is developing the technique as a treatment for depression, for which he has performed 28 operations.

He said the discovery of its role in stimulating memory had wide implications.

"It gives us insight into which brain structures are involved in memory.

"It gives us a means of intervening in the way we have already done in Parkinson's and for mood disorders such as depression, and it may have therapeutic benefit in people with memory problems," he said.

The "pacemaker" delivers a constant low-level current that stimulates the brain but cannot be perceived by the patient.

Professor Lozano said: "It is the same device as is used for Parkinson's disease. We have placed the electrodes in exactly the same area of the hypothalamus because we want to see if we can reproduce the findings in the earlier experiment.

"We believe the memory circuits we are stimulating are close by, physically touching the hypothalamus.

"It is a very effective treatment for the motor problems associated with Parkinson's disease and it has been used on 40,000 people.

"We are in the early stages of using it with Alzheimer's patients and we don't know if it will work. We want to assess if we can reach the memory circuits and drive improvement. It is a novel approach to dealing with this problem."

British researchers welcomed the discovery. Andrea Malizia, a senior lecturer in psychopharmacology at the University of Bristol who is studying deep-brain stimulation as a treatment for depression, said: "If they had said let's stick an electrode in the hypothalamus to modify Alzheimer's disease, I would have said 'Why start there?' But, if they have had a serendipitous finding, then that is as good. Serendipitous findings are how a lot of discoveries in science have been made."

Ayesha Khan, a scientific liaison officer at the Alzheimer's Disease Society, said: "This is very cutting-edge research. It is exciting, but the initial result is in one person. It will need much further investigation."

Deep -brain stimulation has been used for more than a decade to treat a range of conditions including depression, chronic pain, Parkinson's disease and other movement disorders.

It has been so successful in treating Parkinson's that 40,000 patients worldwide now have electrodes implanted in their brains driven by pacemakers stitched into their chests.

The electrodes are implanted under local anaesthesia while the patient is awake.

The surgeon carries out a craniotomy – lifting a section of the skull – and inserts the electrodes and leads. By stimulating the electrodes and checking the patient's response, the surgeon can check that they are positioned in the right place.

Different areas of the brain are targeted for different conditions. For Parkinson's disease, they are placed in the subthalamic nucleus; for depression, in area 25 of the cingulate cortex.

In the UK, the surgery is performed at the National Hospital for Neurology and Neurosurgery in London, in Bristol, in Oxford and at a handful of other centres.


Honorary Master
Jan 22, 2006
This certainly would be amazing. Really hope something comes of this.


Honorary Master
Nov 9, 2005
Just goes to show... those memories (every single one) are still locked away there somewhere. Could you imagine being able to recall on demand any particular (and very vivid) memory from any particular time?


Imagine remembering how it was when you were born.

... or maybe not. :eek:


Honorary Master
Aug 18, 2005
The brain is holostic - all parts contain all parts.
No, I do not have any proof for that, just my one little opinion.

/me prepares to be shot down.


Honorary Master
Sep 4, 2007
Ninja: The guy was obese, he didn't suffer from memory loss. To us people with "normal memory", it would work exactly the same as with him.


Expert Member
Feb 11, 2007
Does that mean if I wear helmet all day I am being as clever as Alfred Einsteins?


Honorary Master
Feb 28, 2005
want to remember when i changed hands from a right handed to a lefty ,tis important to me:D


Jan 24, 2007
Some dude in Australia has been experimenting with this for a while - well something similar - he has been inducing memories through electromagnetic stimulation after studying autistic savants. Nice to see some progress being made on this front.

Memories are formed by the linking of neurons together - we have short term where these neurons die and are replaced AFAIK so not all our memories are sitting there waiting to be viewed in vivid HD. I think long-term memory is where this is aimed though which would be fantastic.