Binary_Bark
Forging
- Joined
- Feb 24, 2016
- Messages
- 38,582
A newly discovered collective rattling effect in a type of crystalline semiconductor blocks most heat transfer while preserving high electrical conductivity - a rare pairing that scientists say could reduce heat buildup in electronic devices and turbine engines, among other possible applications.
A team led by scientists at the Department of Energy's Lawrence Berkeley National Laboratory (Berkeley Lab) discovered these exotic traits in a class of materials known as halide perovskites, which are also considered promising candidates for next-generation solar panels, nanoscale lasers, electronic cooling, and electronic displays.
These interrelated thermal and electrical (or "thermoelectric") properties were found in nanoscale wires of cesium tin iodide (CsSnI3). The material was observed to have one of the lowest levels of heat conductivity among materials with a continuous crystalline structure.
This so-called single-crystal material can also be more easily produced in large quantities than typical thermoelectric materials, such as silicon-germanium, researchers said.
"Its properties originate from the crystal structure itself. It's an atomic sort of phenomenon," said Woochul Lee, a postdoctoral researcher at Berkeley Lab who was the lead author of the study, published the week of July 31 in the Proceedings of the National Academy of Sciences journal. These are the first published results relating to the thermoelectric performance of this single crystal material.
Researchers earlier thought that the material's thermal properties were the product of "caged" atoms rattling around within the material's crystalline structure, as had been observed in some other materials. Such rattling can serve to disrupt heat transfer in a material.
"We initially thought it was atoms of cesium, a heavy element, moving around in the material," said Peidong Yang, a senior faculty scientist at Berkeley Lab's Materials Sciences Division who led the study.
Read more at: https://phys.org/news/2017-07-scientists-unique-thermoelectric-properties-cesium.html#jCp