OrbitalDawn
Ulysses Everett McGill
- Joined
- Aug 26, 2011
- Messages
- 47,031
After a fraught few years, experiments to redefine the unit have reached agreement.
For decades, metrologists have strived to retire ‘Le Grand K’ — the platinum and iridium cylinder that for 126 years has defined the kilogram from a high-security vault outside Paris. Now it looks as if they at last have the data needed to replace the cylinder with a definition based on mathematical constants.
The breakthrough comes in time for the kilo*gram to be included in a broader redefinition of units — including the ampere, mole and kelvin — scheduled for 2018. And this week, the International Committee for Weights and Measures (CIPM) will meet in Paris to thrash out the next steps.
“It is an exciting time,” says David Newell, a physicist at the US National Institute of Standards and Technology (NIST) in Gaithersburg, Maryland. “It is the culmination of intense, prolonged efforts worldwide.”
The kilogram is the only SI unit still based on a physical object. Although experiments that could define it in terms of fundamental constants were described in the 1970s, only in the past year have teams using two completely different methods achieved results that are both precise enough, and in sufficient agreement, to topple the physical definition.
Redefinition will not make the kilogram more precise, but it will make it more stable. A physical object can lose or gain atoms over time, or be destroyed, but constants remain the same. And a definition based on constants would, at least in theory, allow the exact kilogram measure to be available to someone anywhere on the planet, rather than just those who can access the safe in France, says Richard Davis, former head of the mass division of the International Bureau of Weights and Measures (BIPM) in Sèvres, France, which hosts the metal kilogram.
